منابع مشابه
Higher rank Einstein solvmanifolds
In this paper we study the structure of standard Einstein solvmanifolds of arbitrary rank. Also the validity of a variational method for finding standard Einstein solvmanifolds is proved.
متن کاملGENERALIZED HIGHER-RANK NUMERICAL RANGE
In this note, a generalization of higher rank numerical range isintroduced and some of its properties are investigated
متن کاملCohomology of Jordan triples and Lie algebras
We develop a cohomology theory for Jordan triples, including the infinite dimensional ones, by means of the cohomology of TKK Lie algebras. This enables us to apply Lie cohomological results to the setting of Jordan triples.
متن کاملTriples of Real Simple Lie Algebras
The article is devoted to the problem of classification of Manin triples up to weak and gauge equivalence. The case of complex simple Lie algebras can be obtained by papers of A.Belavin, V.Drinfel'd, M.Semenov-Tian-Shanskii. Studing the action of conjugaton on complex Manin triples, we get the list of real doubles. There exists three types of the doubles. We classify all ad-invariant forms on t...
متن کاملLie higher derivations on $B(X)$
Let $X$ be a Banach space of $dim X > 2$ and $B(X)$ be the space of bounded linear operators on X. If $L : B(X)to B(X)$ be a Lie higher derivation on $B(X)$, then there exists an additive higher derivation $D$ and a linear map $tau : B(X)to FI$ vanishing at commutators $[A, B]$ for all $A, Bin B(X)$ such that $L = D + tau$.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Mathematical Society of Japan
سال: 2002
ISSN: 0025-5645
DOI: 10.2969/jmsj/1191593908